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The form of steep capillary waves is of interest as a possible initial condition for the 
formation of air bubbles at a free surface. In this paper the limiting forms of pure 
capillary waves and of quasi-capillary waves are studied analytically. Crapper’s 
finite-amplitude solution is expressed in a simple form, and is shown to be one of 
several exact elementary solutions to the pure-capillary free-surface condition. 
Among others are the solution z = w + sinh’w, where w is the velocity potential, and 
also z = w3. The latter solution, though it represents a self-intersecting flow, can be 
used as the first in a sequence of approximations to the form of the steepest wave. 
Hence it is shown that the influence of gravity on the shape of the limiting ‘bubble ’ 
is very small. The result is confirmed by an examination of Hogan’s numerical 
calculations of limiting capillary-gravity waves. 

In the crest of a limiting wave the particle velocity is almost constant and equal 
to the phase speed. This property makes i t  possible to apply a quasi-static 
approximation so as to determine the form of the crest, and hence to find an 
expression for the complete profile of a capillary-gravity wave of limiting steepness. 
It appears that there exists a solitary wave of capillary-gravity type on deep 
water. 

1. Introduction 
While much attention has been given recently to the limiting forms of steep 

gravity waves, and the way in which such waves may overturn and trap air bubbles 
a t  the sea surface, rather few studies have been made of steep capillary or 
gravity-capillary waves. Yet this subject may be of considerable interest not only on 
account of its relevance to the exchange of gasses and water droplets between the 
atmosphere and ocean, but also on account of the probable contribution to the 
underwater acoustical background made during the process of bubble formation.? 

Long after Wilton’s (1915) pioneering study of nonlinear gravity-capillary waves, 
the most striking and surprising addition to the literature came with Crapper’s 
(1957) discovery of an exact solution to the problem of pure capillary waves on water 
of infinite depth. This showed that, as the wave steepness increases, so the wave 
crests become more flat and the troughs become more curved (the complete opposite 
of pure gravity waves), until the free surface in the trough becomes vertical and then 
finally touches itself, pinching off a bubble of ‘air ’. This prediction has received 
experimental support from laboratory studies by Schooley (1  958). 

t See the Proceedings of the NATO Workshop on Natural Mechanisms of Surface Generated 
Noise in the Ocean, held at Lerici, Italy, from 15-19 June 1987. 
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A corresponding exact solution for water of finite depth, also mentioned by 

Crapper (1957), was worked out in detail by Kinnersley (1976). The solution, which 
is in terms of elliptic functions, is applicable also to  symmetric waves on a thin sheet 
of fluid. Kinnersley obtained also the corresponding antisymmetric solutions, thus 
generalizing to  waves of finite amplitude the theory accompanying Taylor’s ( 1959) 
elegant experiments on thin sheets of fluid. 

For gravity-capillary waves no exact solutions are known, but precise numerical 
calculations have been carried out by Hogan (1980) which show that in one class of 
gravity-capillary waves (which we shall call the ‘ quasi-capillary ’ waves) a similar 
phenomenon occurs, in which the free surface touches itself, thereby trapping a 
bubble of air. I n  such an event, of course, the surface would in practice immediately 
shorten and adjust itself so as to reduce the surface-tension energy. Hence this type 
of limiting configuration can exist only for a fleeting instant,? in contrast to the 
situation for pure gravity waves, where the Stokes 120” corner flow is a theoretically 
possible steady flow, even though i t  may in fact be unstable. 

The purpose of the present paper is to study the form of the final ‘pinch’, a t  the 
instant when the surface touches itself, as an initial condition for the formation of the 
bubble and the generation of a pulse of sound when it breaks away from the free 
surface. I n  this process, because of the short timescales involved, gravity is unlikely 
to have much direct influence, and capillarity is all-important. 

In  $ 2  the capillary surface condition is first expressed in a convenient form, and 
in $53-7 we note the existence of several exact solutions in terms of elementary 
functions: the circular vortex ($3); a hyperbolic or catenary flow ($4) ;  the Crapper 
surface wave, expressed in simple form ($5); a flow possibly relevant to a steady jet 
impinging on a flat fluid surface ($6); and a simple cubical flow ($7) .  The last two 
both involve self-intersecting streamlines, but i t  is pointed out that  the latter, in 
particular, is of use mathematically as the first term in a sequence of approximations 
to realizable physical flows (see $8). This enables us to estimate, in $9, the influence 
of gravity on the form of the limiting ‘bubble’, and to show that it is indeed small. 
The result is confirmed by examination of Hogan’s (1980) accurate computation of 
the surface profiles. 

I n  the wave crest, on the other hand, the particle velocities relative to the phase 
speed are shown t o  be small, with the result that  one may apply a quasi-static 
approximation and obtain an expression for the surface profile in terms of known 
functions ($11) .  I n  this expression, as the wavelength tends to infinity, the depth of 
the bubble ‘neck’ remains bounded, yielding a solitary wave (on deep water) with 
calculable properties ($12). The ‘bubble’ size is determined by the radius of 
curvature a t  the ‘neck’, which is also finite. 

I n  $13 we estimate the phase speed both of the solitary wave and of the more 
general periodic wave of limiting steepness, and in $ 14 we note a small correction to 
the crest profile so as to take account of the non-zero particle velocity. The maximum 
bubble diameter arising from detached wave troughs is calculated in $15 and is 
shown to be consistent with the laboratory experiments of Schooley (1958). A 
discussion follows in Q 16, and the conclusions are summarized in $ 17. 

t For this reason a class of steady flows calculated numerically by Vanden-Broeck & Keller 
(1980), in which the pressure in the ‘bubble’ differs from that at the free surface, seems to have 
little applicability. 
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2. The free-surface condition 
Consider a frictionless, incompressible fluid, of uniform density, in steady 

irrotational motion. Let z = x+iy denote a complex Cartesian coordinate and w = 
4 + i$ the complex velocity potential. The vector fluid velocity is given by 

w: = q eie, (2.1) 

q being the magnitude and 0 the direction of the flow (an asterisk denotes the - I 

complex conjugate). Hence also 
zw = q-1 eifi 

and we see that 

is an analytic function of z or of w. 

B + i  lnq = -i lnz, 

The boundary condition on a free streamline ($ = constant) is 

p+k2+TK+gy = constant, (2.4) 

where p denotes the pressure, T and q surface tension and gravity respectively, and 
K is the curvature. The coordinate y is measured vertically upwards. We seek to 
express (2.4) in a form such that w is the independent and z the dependent variable. 
Now if s denotes the arc length along any given streamline we have 

dB d$d0 d(0+i lnq) 
ds ds d 4  dw ' 

-K = - = - - = q Re 

By equation (2.3) this is 

We have also 9-2 = z w z* W' (2.7) 

So the condition (2.4) becomes 

-ig(x-z*) = constant, 

where q is given by (2.7). 

equation (2.8) reduces to 
In the case when the pressure is assumed constant and gravity is negligible, 

* 
q2+iT r;: 7:) = constant. (2.9) 

We shall now discuss some exact, elementary solutions of (2.9). For the sake of 
simplicity we choose lengthscales so as to give convenient expressions ; conversion to 
other units is straightforward. 

3. z = eiw 
This represents a simple vortex; see figure 1. From (2.6) and (2.7) we have 

(3.1) - K  = q = eV+ 

so that (2.8) yields 
e2*- 2T e@ = constant. 

The condition can be satisfied on any circular streamline, having radius a = e-*. If 
p, denotes the pressure on the free surface ($ = $,,) and p ,  the pressure a t  infinity 
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FIGURE 1. The circular vortex z = e'" 

(I# = - 03) the constant on the right of (3.2) is 2(p,-p,) .  In particular if p ,  = p ,  we 
obtain 

1 
2a' (3.3) T = 1 e@ = - 

2 

In other words, the greater the surface tension, for a vortex of fixed strength, the 
smaller the bubble diameter. 

4. z =  w+sinhw 
On differentiating, we have 

z, = 1 + cosh w = 2 cosh2iw, 

a perfect square, so that from (2.7) 

q-' = 2 coshiw coshiw". 

Moreover = t a n h ~  
z, 

sinh $ 
2 cosh2iw cosh2iw*' 

and so from (2 .5)  K =  

So (2.9) is satisfied on I# = I#, provided that 

1 + 2T sinh @o = 0 

- 1  
2 sinh $, ' 

or T =  

The streamlines are given parametrically by 

x = $+cos@ sinh$,\ 

y = $+sin$ cash$) 

(4.4) 

(4.7) 
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FIGURE 2. Streamlines of the flow z = w+sinhw. 

and are shown in figure 2. The flow is symmetric about the x-axis (@ = O ) ,  and 
provided l@l < in the asymptotes make angles +_ @ with the x-axis. When @ = an the 
streamline is the catenary 

y = + cosh 2. (4.13) 
When 116.1 > in the streamlines are self-intersecting a t  the point given by 

(4.9) 
sinh $ -- - -cos@ 

# 
and the solution is non-physical, if considered in the entire plane. 

Clearly the streamline @ = 0 may be replaced by a plane boundary (friction being 
neglected). In  fact the flow will be seen to be identical with a limiting form of finite- 
amplitude capillary waves derived by Kinnersley (1976, equation (72)) for water of 
finite depth. 
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5. z =  w-tanw 

simplest form. Clearly we have 
This is Crapper’s deep-water capillary wave (Crapper 1957) thrown into its 

z ,  = I-sec2w = -tan2w, 

q-l = tan w tan w* 

(5.1) 

again a perfect square, giving 

(5.2) 

and 

Hence 

and 

2 zww - 
2, sinw cosw’ 

cos 2$ sinh 2+ 
sin2 w sin2 w* 

K =  

(5 .3)  

(5.4) 

(5.5) 
cos 24 cosh 2$ 
sin2 w sin2 w* 

so that the boundary condition (2.8) is satisfied on $ = +, provided only that 

T = -$ ~0th2$,. (5.6) 

It will be noted that $, is generally negative. 
The above solution was expressed by Crapper (1957) in terms of a parameter 

A - e21C.o (5.7) 

so that  the dispersion relation (5.6), for example, becomes 

in dimensional form. Here k and c denote the wavenumber ( =  2n/wavelength) and 
the phase speed, respectively. In  the solution (5.1) we have k = 2 and c = 1 .  

The form of the streamlines $ = constant are shown in figure 3. They clearly 
correspond to a wave of finite amplitude, as seen in a reference frame moving with 
the phase speed. Any streamline + = +, may be taken as the free surface provided 
$, 2 = -0.394 (that is A < 0.455). The critical streamline $ = $crit touches 
itself, enclosing a ‘bubble ’. 

However, when $, < +crit the surface intersects itself and the flow becomes 
multivalued (see figure 4). Flows in this range have usually been ignored as being 
unphysical. Nevertheless they turn out to  be of some use mathematically as we shall 
see below in $8. 

Here we note that as $ ,+O and w+O the asymptotic behaviour of the flow is 
given by 

(5.9) = w-tanw - -1 3 3w . 

On the other hand as Po + 0 but w -+ $n we have 

= wfcot  (w-$n) in+-+ (5.10) 
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L 

FIGURE 3. Streamlines of the flow z = w-tanw, representing a pure capillary wave on deep 
water. 

0.2i v 
FIGURE 4. Streamlines for z = w- tan w near the origin, when $,, is small. 
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FIGURE 5. Streamlines for z = w- tan w near the point w = in, when $o is small 

the flow being dominated by the pole at w = in. The corresponding part of the free 
surface is thus almost circular, as seen in figure 5.  The square of the velocity is given 

by q 2  - Iw-$7t.l* (5.11) 

which is very small, making the curvature K almost constant ; the free surface is like 
an almost stationary cylindrical balloon. 

6. z =  w+sinwandz= w-tanhw 

those discussed in $$4 and 5,  respectively. The first, 
For the sake of completeness we mention here two solutions which are related to 

z = w+sinw, (6.1) 

will be found to satisfy the boundary condition (2.9) on $ = )cro provided only 
that 

The second, x = w-tanhw, 

satisfies (2.9) provided that 

In  both cases the streamlines are self-intersecting, as seen in figures 6 and 7 
respectively. However, while the flow (6.1) is extremely multivalued, it is quite 
conceivable that if (6.3) were modified by the inclusion of gravity it could correspond 
to the flow of a jet impinging on a plane water surface. 
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FIGURE 7 .  Streamlines of z = w-ttanh w. 

7. z = fw' 
This simple expression, which has already been seen to be a local limiting form of 

the flow described in $5,  turns out to be itself an exact solution to  the boundary 
conditions. For we have 

z, = w2, (7 .1)  

hence 
1 q = - -  

ww* 

and (7.3) 
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FIGURE 8. Streamlines of z = $3 

Therefore equation (2.8) is satisfied on t+b = provided 

The streamlines, shown in figure 8, are all self-similar and self-intersecting, so that 
the overall flow is not physical. We shall see, however, that  the solution is useful as 
a first approximation to the initial form of an entrained bubble. 

We note that the corresponding ‘dipole ’ expression 

(7.5) z = w-1 

which also occurs as an asymptotic form in $5,  and which also gives a squared 
expression for z,, is nevertheless not an exact solution of the boundary condition.? 

8. Higher approximations 
With a view to studying the effect of gravity on the ‘loop’ enclosed by a steep wave 

we consider first some higher approximations to the form of the loop, based on 
expansions, not for A << 1, as in the small-amplitude approximation of Stokes or 
Wilton, but about w = 0 ( A  = 1). 

7 The solution z = +w3 can also be derived from equations (40) and (41) of Crapper (1957) on 
setting a, = u3 = 0 .  
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FIGURE 9. Successive approximations to'the limiting 'bubble', corresponding to partial sums in 
the series (8.1). 

Thus to order w', say, we have from $5 

(see Abramowitz & Stegun 1965, p. 75). The lowest-order approximation, which is 
exact, was studied in the previous Section. The next approximation 

z = -lw3-- 3 125w5, (8.2) 

is not an exact solution, but will be found to satisfy the boundary conditions to order 
& provided that 

Similarly the next approximation satisfies the boundary condition t o  order @: 
provided that 

the last two equations representing successive partial sums in the expansion of 
-4  coth2@r, in powers of @,,. 

Figure 9 shows the first three approximants to the surface profile in the critical 
case ~ r ,  = -0.394. 
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~ ~ ~~~~ 

K H / L  R = S / L  r = S / h  
00 0.7298 0.316 0.149 
10 ,5560 ,0199 ,151 
5 ,4726 .O 156 ,152 
1 .2569 .0074 ,154 

TABLE 1 .  Yarameters of‘ capillary-gravity waves 

The series (8.1) has a radius of convergence Iwl = 80 (corresponding to the nearest 
pole of tan w) and so is convergent when 1$1 < ($x2 - $;)+ = 1.521. The value of 141 a t  
the point of contact is only 1.024. 

9. The effect of gravity 
In  the boundary condition (2.7) the term involving gravity g is, to lowest order, 

- ig(z - z*) = $ig( w*3 - w3)  

= %$0(3$2-$i). 

This compares with the terms (q2-  1) and TK which are of order TI$:. We therefore 
expect that gravity will have an  effect at order $: and that its relative magnitude will 
be of order g$G/T. I n  dimensional terms this is 

(g/TE2) x ($0 k / C I 6 .  (9.2) 

For gravity-capillary waves, in which (g/Tk2) is of order 1,  and where ljro E / c  is of 
order $ or less, we expect effects of order 10-1 a t  most. 

Hogan (1980, 1981) has calculated numerically the profiles of steep gravity- 
capillary waves for values of the parameter 

K = Tk2/g  (9.3) 

ranging from $ to  00. Measurements of the critical profiles shown in figure 12 of 
Hogan (198l)t are summarized in table 1 below. R denotes the ratio of the bubble 
width 6 to the wavelength L of the wave, and r denotes the ‘aspect ratio’ 6/h of the 
bubble, h being the vertical distance between the ‘neck’ of the bubble and the lowest 
point on the profile. H is the total crest-to-trough wave height. It will be seen that 
while R varies over a range of almost 4 to 1, the aspect ratio r varies only between 
0.149 and 0.154. 

Hogan (1981) has also drawn profiles for the case K = 0.5 but these are thought to 
be less accurate owing to incomplete convergence of the Pad6 approximants (see 
Hogan 1981, p. 408). 

10. Form of the crest in a capillary-gravity wave 
It was Wilton (1915) who first showed that for a given wavelength it may be 

possible for more than one type of capillary-gravity wave to exist. For simplicity we 
shall limit discussion initially to the waves denot,ed as Type 1 in the numerical 
computations by Schwartz & Vanden-Broeck (1979). $ 

t Dr Hogan kindly supplied the original calculations on which his profiles are based. 
1 See also Chen & Saffman (1979, 1980). 
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As shown above in $5, and mentioned also by Crapper (1957) the particle velocity 
q in the upper half of a pure capillary wave (K = CQ) i s  very small, leading to an 
almost circular profile for the wave crest. We suspect that the same may be true also 
for the more general capillary-gravity waves (K finite) when these are steep enough 
to develop a high curvature in the wave troughs. 

Let us then assume the square of the velocity q to  be negligible, so that the 
boundary condition (2.4) becomes, when p = 0, 

TK +gy = constant. (10.1) 

For simplicity we shall choose units so that 

T = g = l  (10.2) 

(so that in dimensional terms the units of length and velocity are respectively 
( T / g ) i  and ( g T ) ; ) .  Then if a denotes the angle of depression of the tangent and s i s  
the arc length, (10.1) can be written 

(10.3) 

We have also - dy = -sina, (10.4) 

da - _  - - y + constant. 
ds 

ds 
so that  on eliminating y we have 

d2a 
ds2 - sina. -- 

On multiplying by da/ds and integrating with respect to s we obtain 

(10.5) 

(10.6) 

where K~ denotes the curvature a t  the wave crest a = 0, y = 0. Writing now $a = p 
and $ K ~  = k we obtain 

s = s "  dP (10.7) 
(k2 + sin2/?)+ 

and the displacements x, y from the crest are given by 

cos ads = 1 ap, (k2 + sin2 p) r  
(10.8) 

IyI = [s inads = 2[(k2+sin2/?)i-k]. (10.9) 
0 

Clearly (10.7) and (10.8) can be expressed in terms of the standard elliptic integrals 
E, F and K (see Abramowitz & Stegun 1965) by writing 

1 m=-- k2 + - sin2 0, (10.10) 

giving 

and 

Also 

and 

s = m;[K(m) - F(y I O)] (10.11) 

x = (1+~~ : )~ -2m-~ [E(m) -EE(y18) ] .  (10.12) 

1y1 = ( K :  + 4 sin2&):- KO, 

K = (K: + 4 sin2 ;a);. 
(10.13) 

(10.14) 
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- Yk/ TP 
FIGURE 10. Solutions to the static equation (10.6) for different values of the initial curvature K,,. 

Some solutions for given values of K~ are shown in figure 10. When a = in, that is, 
the tangent to the surface profile is vertical, the value y1 of y from (10.13) is given 

(yl( = (K;+2)Lc0. (10.15) 

So the depth of this point below the wave crest is always finite, no matter how small 
the initial curvature. From (10.14) the curvature K~ at a = in  is given by 

K1 = ( K ; + 2 ) ; ,  (10.16) 

which is also finite. The physical explanation is clear. Equations (10.3) and (10.4) are 
precisely the same as for the surface of a small pool of liquid resting on a plane surface 
(in two dimensions only). We have simply considered the case when the boundary 
condition a t  the plane surface is that  the tangent to  the liquid be vertical. 

by 

In the limit when K~ --f co then k = + K ~  becomes large and m +. 0 so we have 

lYl l  - 1 / K o ,  K1 - KO. (10.17) 

The wave profile becomes the arc of a circle, approximating a pure capillary wave. 
In  that case 

lYIl/"1+ 1- (10.18) 

On the other hand when K,, -+ 0 then from the asymptotic developments of E(y 10) 
and F(ylS) for small k (see Byrd & Freedman 1971, p. 300) we find that both 

s1 = mf[K(m) - F($ I S ) ]  

and x1 = (1 + ~ ~ ~ ) ~ ~ - 2 m - t [ E ( m ) - E ( a n l I ) ]  (10.20) 

(10.19) 

tend to infinity like In ( 1 / ~ ~ ) .  Hence the wavelength 

L = 22, (10.21) 

also tends to infinity, while the wavenumber 

z/xl = k = Kt (10.22) 

(in these units) tends to zero. On the other hand we see from (10.15) and (10.16) that  
in the limit K~ +. 0 we have lyll +. 2/2 and K~ --f 2/2, which are finite. The limiting value 
of y1 is shown in figure 10 by the broken horizontal line. 

To test the validity of the approximation (10.5) we have plotted in figure 11 the 
ratio yJz, as given by equations (10.15) and (10.19) (full curve). In  the same diagram 
are shown the ratios for K = co, 10, 5 and 1, the first from Crapper's (1957) exact 
solution, and the others from Hogan's (1980) accurate numerical calculations. In  
each case the agreement is remarkably close, the error being less than 4%. 
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FIGURE 1 1 .  The ratio yJx, as a function of K.  The full curve represents the approximate solution 
(10.15) and (10.20). Crosses represent the full numerical calculations of Hogan (1980). 

11. The complete surface profile 
To complete the surface profile, we may join the approximate solution for the 

‘bubble ’ (in which gravity is neglected and there is a balance between T K  and $q2) to 
the approximate solution for the wave crest (in which h2 is neglected and there is a 
balance between TK and gy)  by requiring that the curvature a t  the top of the bubble, 
where the solutions meet, be continuous. 

As a first check on the approximation we note that the total height H of the wave 
must equal (Iyll + h )  and hence if L is the wavelength 

(11.1) 

where K~ is the curvature a t  the ‘neck’ of the bubble. Now, in the bubble solution of 
$ 5  (see also figure 9) we find 

2 ~ ~ / k ~ ~ ~  = 0.5173 (11.2) 

and . hkcaP/2 = 1.3318, (11.3) 

giving K~ h = 0.3445 (11.4) 

independently of the scale. Thus (11 .1 )  may be written 

H / L  = 0 . 5 ( y 1 ( / ~ 1 + 0 . 1 7 2 2 4 / ~ 1 ~ 1 ,  (11.5) 

where zl, y1 and K, are given by equations (10.15), (10.16) and (10.19). In figure 12 
we show H / L  as a function of K ,  = ( ~ C / Z ~ ) ~ .  In the same figure are plotted the values 
computed by Schwartz & Vanden-Broeck (1979, table 3) and by Hogan (1980). The 
agreement is encouraging. 

The area of the limiting bubble in figure 9 is easily found to be 0.032324. In 
dimensional units the corresponding area is 

Q = 0.03232(2/kc,p)2 = 0.008655~;~. (11.6) 
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K 

FIGURE 12. The wave steepness Hj'L as a function of K .  The full curve represents the static 
approximation. Plotted points represent calculations : x , Schwartz & Vanden-Rroeck (1979); a, 
Hogan (1980); +, Chen & Saffman (1980). The upper dashed lines represent asymptotes derived 
from $12. The lower dashed line on the left corresponds to equation (14.12). 

This is the same as for a circle of radius 

a = (SL/n)t = 0.0525~;~.  (11.7) 

The circulation round the bubble in figure 9 is 2.0829. Thus in dimensional units 

(11.8) 
we have 

4 = 2.0829(2c/kC,,) = 1.5689(2'/~,)4 

(see equations (12.10) and (12.11)). 

12. A solitary wave on deep water? 
The results of the two previous Sections strongly suggest the existence, as K --f 0, of 

a solitary wave of Type 1, that is a capillary-gravity wave of finite amplitude in deep 
water. For waves of limiting steepness, the profile of the wave crest would be given 
approximately by the solution to (10.6) in the limit K()  --f 0, that is 

d a  
ds 
_ -  - -2 sinia. (12.1) 

On moving the origins to the point (x,, yl) where a = i n  and denoting the 
corresponding coordinates by primes we have 

d a  - In cot +a - C ,  (12.2) 

where C = In cot in = 0.8814. (12.3) 
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Similarly cos a 
(g/T)bx’ = 1; ___ da = (g/T)i S’ - 2( cos - cos $ 7 ~ )  

2 sin$a 

sin a 
2 sin $a 

da = $(sin $a - sin in) 

(12.4) 

(12.5) 

and (T/g)iK = 2 sinia. (12.6) 

When a = in the curvature K~ is 
K~ = (2g/T)i. (12.7) 

Below the neck of the bubble the flow is given approximately by 

zk,/2 = wk2/2c,- tan (wk2/2c,), (12.8) 

where k, is the wavenumber of the complete capillary-wave solution and c2 is its 
phase speed. From (5.8) we have - 

k T, c; = ___ 
1+A2 

with A = 0.455, hence 
G, = 0.8105(k2T)f. 

(12.9) 

(12.10) 

k, is determined by the curvature a t  the neck of the bubble. On equating this to 
K~ we have k, = 2~J0.5173 = 3 . 8 6 6 1 ~ ~  

from (12.7). If K~ is given by (12.7) then 

(12.11) 

k, = 5.467(g/T)i. (12.12) 

13. The phase speed: a vortex approximation 
To determine the phase speed it is necessary only to know the particle velocity in 

the far field. For, in deep water, the stream velocity a t  infinite depths tends to  minus 
the phase speed c.  Now in a periodic wave of limiting steepness it is reasonable to 
compare the far-field flow with that from an array of equal vortices in a uniform 
stream U (see figure 13), each vortex being situated near a point z = mL, M = 0, 1,  
+ 2 , .  . . . If r denotes the circulation in each vortex, the whole array of vortices 
induces a horizontal velocity + r / 2 L  a t  points far below and above the level y = 0 
respectively. Hence we shall have 

= u i- r / 2 ~ .  (13.1) 

What should be the appropriate values of U and r? We saw that in the case of a 
pure capillary wave ( K  = 00)  the velocity in the crest of the wave was very small, so 
that in that case 

Ucap-GapI2Lcap = 0, (13.2) 

very nearly. From (13.1) and (13.2) it  follows that 

ucap = %cap’ Gap = LcapCcap’ (13.3) 

where the suffix ‘cap’ refers to pure capillary waves. Hence 

G a p  = 2nccap/kcap, 

the speed cCap being given by equation (12.10), that is 

(13.4) 

ccap = 0.8105(kcap T)t. (13.5) 
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r 

FIGURE 13. A vortex approximation for the far-field flow in a limiting capillary-gravity wave. 

Consider now capillary-gravity waves of any arbitrary length L. Let us assume 
that the values of U and r are scaled according to the curvature at the neck of the 
bubble so 

u = 2c 2, r= 2nc,ik,, (13.6) 

where c ,  and k, are given by (12.10) and (12.12). Then from (13.1) we have 

1 
4x 

c = $ 2 + - r k ,  (13.7) 

where k = 2n/L = Ki(g/T)i. (13.8) 

From (13.6) and (13.7) it follows that 

c = +,( 1 + k/k,) (13.9) 

and hence e l ( @ ) ;  = 0.948+0.173Kh. (13.10) 

In the special case of solitary waves (K + 0) the influence of the vortices on the far- 
field velocity tends to zero, and we find 

c = 0.948(gT)a. (13.11) 

This compares with the value 
c = 0.923(gT)a (13.12) 

found by Chen & Saffman (1980) in the case K = 0.042, their longest wave (see 
table 3). 

In  figure 14 are plotted the approximate formula (13.10) (full curve) together with 
the numerical values of c/(gll)a inferred from the work of Schwartz & Vanden-Broeck 
(1979) and Chen & Saffman (1980) ; see tables 2 and 3 respectively. The argument is 
remarkably close. 

to  be the same as that 
around the ‘bubble’, as in (11.8). That equation refers only to the near-field flow. Up 
to the point of contact, there is in fact no vorticity within the fluid itself. 

Note that i t  is not necessary for the equivalent circulation 
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FIGURE 14. The dimensionless phase speed c/(gT)i in a capillary-gravity wave of limiting steepness, 
as a function of K .  Full curve represents the vortex approximation ; plotted points fully calculated 
values : x , Schwartz & Vanden-Broeck (1979) ; + , Chen & Saffman (1980). 
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TABLE 2. Parameters of limiting capillary-gravity waves of Type 1, as calculated by Schwartz 
& Vanden-Broeck (1979) 

K H / L  c ( k / g ) i  c / ( g T ) a  
2.333 - 1.3843 1.120 
0.666 - 0.8865 0.981 
0.3 0.1372 0.7038 0.951 
0.25 - 0.6677 0.944 
0.042 - 0.4178 0.923 

TABLE 3. Parameters of limiting capillary-gravity waves of Type 1 as calculated by Chen & 
Saffman (1980) 

14. The tails of the solitary wave 
In  accurate calculations of the surface profiles a t  values of K equal to 0.5 or less 

one notices a tendency €or a shallow dip or hollow to develop near the wave crest (see 
for example Chen & Saffman (1980), figures 3 and 8, or Hogan (1981), figure 4). This 
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resembles the 'dimple' in the profile of a weakly nonlinear ripple, noted first by 
Wilton (1915) at certain critical wavenumbers, and now usually attributed to 
resonances between the fundamental wavelength and some higher harmonic which 
travels at  the same speed. For the longer waves, however, the speed c of the complete 
wave can be much slower than the minimum phase speed cmin = (4gT)f for free 
capillary-gkavity waves of low steepness. Hence a second or higher harmonic would 
not resonate ; the extra displacements must be mainly forced. 

We shall show that in the steep waves under discussion the effect can be attributed 
to the non-zero velocity in the far field, which so far we have neglected. Consider the 
case of the solitary wave. Assuming the particle velocity in the far field consists of 
a uniform stream U = g2 together with a vortex of strength r/2n at z = 0 then the 
local particle speed will be given by 

q2 = lie2 + r/(2ziz)I2. (14.1) 

For large values of x we shall have asymptotically 

q 2  = g+- --c2ym 2 - 2  
2n r ( T  2n 1 (14.2) 

to order x-~, where ya, denotes the limiting value of y. The boundary condition (2.4) 
then becomes 

y + (T/g)  K = ym + Bx-~,  

where 

(14.3) 

(14.4) 

For small slopes, the curvature K is approximately -d2y/dx2, so for large x the 
appropriate solution to (14.3) tending to y, as x-t 00 is, to lowest order in l /x,  

1 

y = ym + Bx-2 +C e-(g/T)%X (14.5) 

where C is a constant to be determined. (We note that as x-t  co the exponential term 
is dominated by the term in x--"). 

To determine the constant C, the solution (14.7) may be joined to the rest of the 
profile at some point x = xM, say. We have no expression for the velocity field a t  
intermediate distances other than the static approximation q = 0. So in order to 
preserve continuity in the curvature K we interpolate q2 by the expression 

q2 .it (1  -x&/x4) I$c,+r/(2inz)[2, (14.6) 

which vanishes at  the matching point xM and also preserves the asymptotic form 
(14.2) of q2 as x-t 03. 

To determine ym we write (14.3) a8 

Y + (T/g)  K + q2/2!3 = Ym + 4/89 (14.7) 

so that setting q = 0 we have 

Ym +ci/8g = Y M  + ( T / g )  KM = ( T / g )  K1. (14.8) 
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FIGURE 15. Approximate profile of the solitary capillary-gravity wave. O P :  capillary ap- 

proximation ; OQ: static approximation ; QSW : vortex approximation. 

In practice, the simplest way to perform the joining is to integrate the equations 

dx/ds = cosa, 

dylds = sina, 

da/ds = y+&'-(T/g)~, 

forward from 5 = 0 where x = 0, y = 0, a = in taking 

p2 = { '7 
1'1 <.M,) 

(14.6), 1x1 > xM. 

(14.9) 

(14.10) 

The curvature K at  a = in may be taken initially as some large value, and then 
gradually decreased until the solution becomes a solitary wave, that  is to say x +  co 
as a + 0, within practical limits. 

If we choose xM = 1 we obtain the profile shown in figure 15. This corresponds to 
an initial curvature 

K ,  = 1.495(g/T)i, (14.11) 

only slightly greater than the value (12.7) for the static approximation. In  the 
present case the surface rises to 

ymax = 1.050(T/g)f at x = 2.485(T/g)i 

before falling gradually towards ym = 1.020(T/g)i as x +- 00. The matching point is at 

For comparison with computed values we show in table 4 some data from Chen & 
Saffman (1980) and Hogan (1981). The 'dimple' at the crest seems to  appear a t  first 
between K = 0.666 and K = 0.5. As K decreases further, the position x of the 
maximum elevation seems to tend towards x = 3.12(T/g)i, compared with our 
(approximate) limiting value 3.14(T/g)i. The depth Ay of the dimple below the 
highest point of the profile is difficult to  determine from Chen & Saffman's figure 8. 
At K = 0.042, 6 appears to be about 0.087(T/g)a. 

The effect of taking different values for the matching point xM is shown in table 5. 
The range 0.8 < xM < 1.5 effectively covers the likely values of x,,, and Ay. Over 
this range, however, K~ varies only between 1.517 and 1.458. 

XM = 0.7680(T/g)'. 
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K 

2.333 
0.666 

t0.5 
0.3 
0.250 
0.042 

00 

k X  

71 

n: 
71 

2.276 
1.74 
1.56 
0.64 

(9 lT) iz  4Y,,x-Y,,2) 

W 0 
6.508 0 
3.850 0 
3.219 0.0227 
3.18 0.013 
3.12 0.032 
3.12 0.018 

t Hogan (1981), figure 4. 

(glT)bmax -Y,,z) 
0 
0 
0 
0.0321 
0.023 
0.064 
0.087 

TABLE 4. Parameters of the dimple at the crest of limiting capillary-gravity waves, from Chen 
& Saffman (1980), figures 3 and 8 

XM Xmax Y*,X Y m  AY K1 

0.8 3.251 1.053 1.035 ,018 1.517 
1 .0 2.485 1.050 1.020 .030 1.495 
1.5 1.797 1.104 0.995 ,109 1.458 

TABLE 5. Parameters of the approximate solitary wave profile. The unit length is (T/g$. 

For the sake of discussion we may take the value (14.11) corresponding to 
xM = 1. Then the vertical extent h of the bubble, from (11.4), is 0.230(T/g)i. Hence 

-- Ya,+h_  k(ym + h, = O.l99(T/g)i. L 2n 
(14.12) 

This asymptote is shown in figure 12 by the lower dashed line on the left. The plotted 
points ( + ) from Chen & Saffman (1980) have been estimated, to graphical accuracy, 
from their figure 8. Their value of ( Y ~ , ~ - -  y,)/L when K = 0.042 (not shown here) is 
0.049, compared to 0.041 from (14.12). Hence it appears that  the computed values 
approach the asymptote in figure 12. 

In  this section we have shown, a t  least qualitatively, that the effect of adding a 
velocity field to the static approximation is to reduce the height of the crest in a 
solitary wave, since the particle speed q reaches its maximum value & at large 
distances. With waves of finite length, however, this is not necessarily true. For 
example in very short waves we have seen that q is a minimum at the crest. For large 
R, therefore, we expect that  the effect of the velocity field will be to increase the 
estimated wave steepness. This indeed is seen in figure 12, when R > 1. 

15. Bubble diameters 
Since the curvature K~ is a monotonically decreasing function of K ,  equation (12.7) 

represents the minimum curvature : K~ min. Hence (1  1.7) represents the maximum 
diameter of the ‘bubble ’ in a two-dimensional situation. If such a cylindrical bubble 
is indeed formed it will quickly break up into spherical bubbles, whose volume will 
depend on the wavelength h of the initial longitudinal instability. Chandrasekhar 
(1961) gives for the fastest-growing capillary instability of a hollow jet 2na/h = 
0.484, hence A = 6.49 x 2a. However, owing to the initially very distorted shape of 
the bubble cross-section, this may be an overestimate. Chandrasekhar neglects the 
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rotation of the jet. Assuming the wavelength of the most unstable perturbation to be 
of order 4xa, the volume of air enclosed by a single bubble will be of order 

P = 4x2a3, (15.1) 

where a is given by (11.7). The diameter d,,, of a spherical bubble with such a 
volume will be 

d,,, = (6V/n)i  = 4.22a = 0 . 2 2 1 ~ ; ~  = 0.146(T/g)i, (15.2) 

which is about 0.40 mm. 
Shorter waves would produce bubbles with a diameter d inversely proportional to 

the curvature K~ ; thus 
d/dmax = (Kl/Krnax)-l .  (15.3) 

This ratio is shown in figure 16 as a function of K .  
In the experiments of Schooley (1958) the steepest gravity waves in his figures 6 

and 7, for example, have wavelengths of about 7 cm, corresponding to K = 6. From 
figure 16 we see that this implies a ratio K ~ / K ~ ~ ~ ~  of about 1.08. Hence we would 
expect d = 0.37 mm approximately. One cannot be sure that the bubbles visible in 
his photographs are indeed due to  these particular waves. Nevertheless i t  is 
interesting that the largest bubbles in his figure 7 have diameters of about 0.3 mm, 
of the same order of magnitude as predicted. 
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16. Further discussion 
We have discussed only limiting capillary-gravity waves of Type 1. The work of 

Schwartz & Vanden-Broeck (1979), Chen & Saffman (1979, 1980) and others shows 
the existence, a t  a given wavelength, of other types of wave which at large 
steepnesses also develop capillary-type ‘pinches’ in the wave trough. It should be 
possible to develop similar approximations for these also, on the basis that they are 
essentially Type 1 quasi-capillary waves superposed on longer quasi-gravity 
waves. 

We note that the solitary waves postulated in $12 are essentially waves of finite 
amplitude, and could not exist in a linear theory, where only sinusoidal solutions are 
possible. In this respect the situation resembles that of the well-known solitary 
gravity waves in water of finite depth. 

In all of the above work we have of course assumed irrotational flow and neglected 
both viscosity and any elasto-viscous effects due to surface films. Under such 
conditions the extent of the agreement with observation found in $ 13 is as good as 
might be expected, though further experiments and observations are desirable. 

In the ocean, a favourable situation for the generation of steep capillary-gravity 
waves may be in the troughs of long but steep gravity waves. For, the shorter gravity 
waves tend to be limited by breaking at the long-wave crests, and then to be 
smoothed out in the troughs by orbital stretching. This may leave a clean slate on 
which the action of the wind can regenerate capillary waves. 

One interesting effect will arise from the vorticity injected into the flow because of 
the circulation 4 around the bubbles. Initially this will generate a kind of 
irrotational shear. A row of bubbles spaced a t  regular distances D in the horizontal 
direction will induce a surface current of strength equal to &ID. Since there is little 
friction inside the bubbles the surface current is carried, so to speak, on roller 
bearings. A rate of production of N bubbles per unit time and per unit horizontal 
distance would be accompanied by a horizontal acceleration of the surface equal to 
NT,. However, this will be balanced by an actual viscous dissipation of vorticity. 
With further data on bubble production the calculation might be usefully elaborated. 

17. Conclusions 
We have shown that in steep capillary-gravity waves in a perfect fluid: 
(1) The shape of the ‘bubble’ which forms in the wave trough is hardly affected 

at  all by gravity; its profile is almost exactly as given by the solution for pure 
capillary waves. 

(2) The size of the ‘bubble ’ is determined by the radius of curvature at  the bubble 
neck, and has a finite upper bound. 

(3) The form of the wave crest above the bubble is given to fair accuracy by a 
static approximation, in which gravity is balanced by capillarity and the particle 
velocity is neglected. This static approximation indicates the existence of a solitary 
capillary-gravity wave on deep water, in which, as the wavelength goes to infinity 
(on a scale of (T/g)f), the depth of the wave trough remains finite. 

(4) The effect of the particle velocity on the profile of long waves ( K  Q 1) is to 
produce a shallow depression, or dimple in the crest. For very short waves (K % 1) 
this effect is reversed, and there is a gain in crest height. 

( 5 )  The profile of the solitary wave has been determined approximately. The 
corresponding bubble, formed after collapse of the surface, has a diameter of about 
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0.37 mm, which is not inconsistent with the laboratory observations by Schooley 
(1958). 

(6) Some simple elementary solutions for pure capillary flows have been brought 
to light, which could be useful in other contexts. 

We have considered only steady motions. The fully time-dependent problem, 
including the compressibility of the water and the generation of an acoustical signal, 
will be considered in a subsequent paper. 

I am much indebted to Dr S. J. Hogan for vigorous discussion and for supplying 
his original numerical calculations for use in $09 and 10. Comments on a first draft 
were made by Dr A. Prosperetti. 

Note added i n  proof. Since this paper was accepted for publication, the author 
has carried out accurate numerical calculations providing strong evidence for the 
existence of a whole family of capillary-gravity waves of solitary type on deep water. 
The crest-to-trough wave heights lie within a certain range. The family includes as 
a special case a wave of limiting amplitude resembling that shown in figure 15 
above. 
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